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Aging exponents in self-organized criticality
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In a recent Letter@Phys. Rev. Lett.79, 889~1997!# we demonstrated that the avalanches in the Bak-Sneppen
model display aging behavior similar to glassy systems. Numerical results for temporal correlations show a
broad distribution with two distinct regimes separated by a time scale that is related to the age of the avalanche.
This dynamical breaking of time-translational invariance results in a previously unrecognized critical exponent
r . Here we present results forr from extensive numerical simulations of self-organized critical models ind
51 and 2. We findr d5150.4560.05 andr d5250.2360.05 for the Bak-Sneppen model, and our results
suggestr 51/4 for the analytically tractable multitrade model in both dimensions.@S1063-651X~97!00812-X#

PACS number~s!: 64.60.Lx, 05.40.1j, 05.70.Ln
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I. INTRODUCTION

Self-organized criticality~SOC! @1# describes a genera
property of slowly driven dissipative systems with many d
grees of freedom to evolve intermittently in terms of bur
spanning all scales up to the system size. Many natural
lanchelike phenomena have been represented using this
cept, including earthquakes@2–4#, extinction events in bio-
logical evolution @5–7#, and landscape formation@8,9#.
Recently, SOC has been observed in controlled labora
experiments on rice piles@10#. Theoretical models of rice
piles @11# are related to a variety of different physical sy
tems by universality@12#. One crucial ingredient for a sys
tem to exhibit SOC is the existence of thresholds that al
it to record the stress exerted by the driving force over lo
periods of time. The emergence of long-term memory
been demonstrated analytically@13# for a multitrait evolution
model @14#, a variant of the Bak-Sneppen model@7#.

In a recent Letter@15# we have shown that the sel
organized critical state in the Bak-Sneppen model exhi
aging behavior that is reminiscent of glassy systems@16#.
Our results indicate that intrinsic two-time autocorrelati
functionsP(tw ;t), describing the return of activity to a sit
at time ta5t1tw which was active most recently at tim
ta5tw for an avalanche that started atta50, decay as powe
laws with two distinct regimes according to

P~ tw ;t !;t2tfirstf S t

tw
D ,

f ~x!;H const ~x!1!,

x2r ~x@1!.
~1!

The early time regime is that of the familiar stationary d
namics. The late time regime has a new critical coefficienr
characterizing the nonstationary relaxation behavior of
SOC systems. The ‘‘waiting time’’tw separating the early
and late time regimes is a measure of the age of the
lanche. We have argued that this aging behavior arises f
the hierarchical structure of the avalanches.
561063-651X/97/56~6!/6466~9!/$10.00
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Generally, the origin of aging behavior does not have
be profound. For instance, it arises in a simple random w
model near a wall, where a symmetry~translational invari-
ance! is explicitly broken. But while the random walk near
wall and the Bak-Sneppen model~especially its random
neighbor variant@17#! are similar in many ways, it appear
that those similarities do not explain the observed aging
havior.

In Sec. II, we use the random walk near a wall to illustra
the quantities that will be measured for the SOC models
Sec. III, we consider the important technical issue of extra
ing the intrinsic aging behavior for a process that does
conserve its norm~such as a random walk near an absorb
wall or a SOC avalanche, having a finite stopping proba
ity!. In Sec. IV, we present detailed numerical results for
aging behavior of SOC models in one and two dimensio
In particular, we have simulated the Bak-Sneppen model
the multitrade model. We have also simulated sandpile m
els exhibiting SOC that show a quite different behavior a
will be discussed elsewhere@18#. Aging in the approach to-
wards or away from the SOC state of sandpile models
also been investigated in Ref.@19#. In Sec. V we discuss ou
results and show that a simple random walk description
not sufficient to explain the found aging behavior.

II. AGING RANDOM WALKS

In this section we will discuss a random walk model
provide a simple intuitive picture of aging. It shows how th
system memorizes the~here, explicit! breaking of a symme-
try. Furthermore, the random walk illustrates the meaning
the correlation functions used to describe the aging beha
and serves to discuss some of the technical issues in me
ing those functions.

We want to consider a random walker on ad51 lattice
who can jump at most one step on each update either on
infinite lattice or a semi-infinite lattice with an absorbin
wall at the origin. A random walk is completely described
its propagator, the conditional probabilityG(n,tun0 ,t0) for a
walker to reach a siten at timet, given that it was at siten0
at some previous timet0,t. To determine its aging behavio
we want to compute a simple two-time correlation functi
~see, e.g., Ref.@20# for a similar definition!
6466 © 1997 The American Physical Society
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56 6467AGING EXPONENTS IN SELF-ORGANIZED CRITICALITY
P~ tw ;t !5(
n

G~n,t1twun,tw!G~n,twun0,0! ~2!

for a walker to return to a site at timeta5t1tw , given that
it was at the same site at the ‘‘waiting time’’tw after the start
of the walk. Thus, to determine the return probability to
site, we take the timetw from the start of the walk to a
previous passage at that site into account. If the two-t
correlation functionP explicitly depends ontw , the system
is said to ‘‘age’’ because the walk would retain a memory
the time since its inception in form of a return probabili
that evolves over time.

A. Unconstrained random walks

Clearly, for an unconstrained walk,G is invariant under
shifts in space and time, and it isG(n,t1twun,tw)
5G(0,tu0,0). Since the norm of the walk is preserved at
times, (nG(n,twun0,0)[1, Eq. ~2! gives P(tw ;t)[P(t)
[G(0,tu0,0), independent oftw . Thus the unconstraine
walk has no memory of its past and does not age.

B. Random walks near an absorbing wall

In the presence of an absorbing wall at the origin, spa
invariance is explicitly broken while time invariance forG
still holds. Equation~2! merely simplifies to

P~ tw ;t !5 (
n.0

G~n,tun,0!G~n,twun0,0!, ~3!

which remains dependent ontw . Hence the breaking of spa
tial invariance inG leads to a breaking of time invariance
P. Such a memory effect arises in the following mann
while in the unconstrained case the mean distance^n& of the
walker from its origin vanishes, the walker starting nea
wall departs from it such that̂n&;t1/2, which follows from
the propagator given by

G~n,tun0,0!'
1

Apt
@e2~n2n0!2/4t2e2~n1n0!2/4t# ~4!

for sufficiently larget and n. Since the distribution for all
walks is sharply peaked near its mean, most walkers occ
sitesn;tw

1/2 away from the wall after the waiting timetw .
Given that most walkers occupy such sitesn, returns to that
site during subsequent timest!tw follow the statistics of an
unconstrained walk:t is not yet large enough to return to th
wall. Only after timest;tw do a sizable portion of the walk
ers experience the effect of the distant wall again, wh
leads to a change in their return statistics for all timet
@tw . The changeover in its return behavior at later timet
1tw thus provides the walker with a memory of the earl
period from the start up to timetw when the walk was drift-
ing away from the wall.~Considering the walker as the ce
ter of a growing domain and its distance to the wall as
measure of the linear size of that domain relates this rand
walk model nicely to the domain-growth picture of aging
glasses proposed in Ref.@21#.!

For this random walk model the crossover in its retu
behavior can be easily derived explicitly: inserting the app
e
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priate forms ofG in Eq. ~4! into Eq. ~3! and choosingn0
arbitrarily close to the wall, we obtain asymptotically

P~ tw ;t !'
n0

pAttw
3 E0

`

dn@12e2n2/t#ne2n2/4tw

5
n0

Atw

2

p
t21/2f S t

tw
D , f ~x!5

1

11x/4
. ~5!

Thus, time-translational invariance is broken and the w
appears to age becauseP becomes a function of the scalin
variablex5t/tw, signaling the predicted crossover in the r
turn behavior that scales linearly with the waiting timetw .
Here the scaling functionf (t/tw) behaves asymptotically a
f (x!1);1 andf (x@1);4/x. But to obtain the ‘‘intrinsic’’
aging behavior of this process, we have to consider the ef
that the norm is not preserved because at each time
walkers may disappear at the absorbing wall.

III. INTRINSIC VS MEASURED AGING BEHAVIOR

Consider the unconstrained random walk in Sec. II A, b
with a finite probabilityz to disappear at each time ste
Then, the propagatorGz of this walk is given by
Gz(n,tun0 ,t0)5(12z) t2t0G(n,tun0 ,t0), where G is the
propagator of the norm-preserving walk in Sec. II A. Thu
with (nG(n,tun0 ,t0)51, we get (nGz(n,tun0 ,t0)
5(12z) t2t0, i.e., the norm of this process is not preserve
According to our definition of the two-time autocorrelatio
function P in Eq. ~2!,

Pmeas~ tw ;t !5(
n

Gz~n,t1twun,tw!Gz~n,twun0,0!

5G~0,tu0,0!~12z! t1tw, ~6!

we would have to conclude that this process ages, sincP
depends ontw . And, indeed, in a numerical simulation of th
process we would measurePmeas, because we would averag
over all processes up to a temporal cutofftco, including
those that disappear at timest,tco.

But, clearly, the ‘‘aging’’ in this simple process is a
artifact due to the diminished norm (12z) t1tw at time t
1tw . Thus, proper normalization is required to extract t
‘‘intrinsic’’ aging behavior ~due to the infinite walk! from
the ‘‘measured’’ aging behavior@22#.

Other processes, such as random walks near an abso
wall or avalanches in the Bak-Sneppen mechanism bel
also may disappear before reaching a cutoff, and we hav
consider the effect on the statistics of the measured res
Here, too, one is interested in the intrinsic properties of
surviving process, i.e., those of the infinite random walk
avalanche, while in simulations one usually averages ove
runs of a process, whether they survived or not. In ma
cases, the results for the asymptotic scaling behavior of s
intrinsic property are no different from the measured on
because the contribution from dying runs remains insign
cant. But for the correlation functions considered in this p
per, which depend on two independent time variables, we
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6468 56STEFAN BOETTCHER
need to consider the effect of the probabilityPt(u) of a
process to disappear at timeu to relate the intrinsic and the
measure results.

To obtain theintrinsic properties of the infinite process
we have to properly normalize the correlation function.
that end, we consider the two-time correlation functi
P(tw ;tuu) for a run that disappears exactly at timeta5u,
and its generic relation to the intrinsic two-time correlati
function Pintr(tw ;t):

P~ tw ;tuu!5H 0 ~u,tw1t !

Pintr~ tw ;t ! ~u>tw1t !.
~7!

These quantities are related to the measured two-time co
lation functionP5Pmeasgiven in Eq.~5!: assuming a power
law probabilityPt(u);u2t, t.1, for the run to disappear a
time ta5u, we have

Pmeas~ tw ;t !5E
0

tco
du P~ tw ;tuu!Pt~u!

;Pintr~ tw ;t !@~ tw1t !12t2tco
12t#. ~8!

Assuming that we only consider data sufficiently far from t
cutoff, i.e., (tw1t)12t!tco

12t , we obtain

Pintr~ tw ;t !;Pmeas~ tw ;t !~ tw1t !t21. ~9!

For the particular form of the intrinsic two-time correlatio
function considered in Eq.~1!, the correct scaling function
for the aging behavior of the process is given by

f intr~x!; f meas~x!~11x!t21. ~10!

Since we are interested in the intrinsic behaviorf intr(x@1)
;x2r , we obtain from our numerical data

f meas~x!;x2~r 1t21!. ~11!

Of course, for the random walk near the absorbing wa
is t53/2 from the familiar first passage time@23#. Thus,
even after correcting for the effect of disappearing walke
the intrinsic process still shows aging behavior: the mea
able aging effect derived in Eq.~5!, f (x)5 f meas(x);x21,
leads to an intrinsic aging behavior off intr(x@1);x2r with
r 51/2 according to Eq.~11!.

IV. AGING IN SELF-ORGANIZED CRITICAL MODELS

The Bak-Sneppen model@7# has been studied intense
and with great numerical accuracy in recent years. We r
to Ref. @24# for a review of its many features and simp
utilize those facts here. The model consists of random n
bers l i between 0 and 1, each occupying a sitei on a
d-dimensional lattice. At each update step, the smallest
dom numberlmin(t) is located. That site as well as its 2d
nearest neighbors each get new random numbers draw
dependently from a flat distribution between zero and o
The system evolves to a SOC state where almost all num
have values abovelc , with lc avalanches formed by th
remaining numbers below.
re-

it

,
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in-
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The multitrade model@14,13# is a variant of the Bak-
Sneppen model that provides a series of exact results for
spatiotemporal correlations in the avalanche process. In
ticular, an equation of motion can be derived and solved
obtain a propagator for the spread of avalanche activity,
to obtain a complete set of scaling exponents that ve
scaling relations previously proposed for the Bak-Snep
model. In this model each lattice site is occupied byM in-
dependent random numbers. On each update again the s
est number in the whole system is located and updated,
one randomly chosen number~out of M ) from each of the
neighboring sites is updated as well. While the mechan
proceeds in the same way for allM as for M51 ~the Bak-
Sneppen model!, it can be treated analytically forM5`.

A quantity similar to the two-time autocorrelation func
tion defined in Eq.~2! can be measured for avalanches in t
self-organized critical state of both models. We focus on
simple quantity,Pfirst(t), measuring the first returns of th
activity to a given site. A power law distribution forPfirst(t)
has been measured numerically for a variety of differ
SOC models@24# by recording all first returns and its expo
nent has been derived exactly for the multi-trade model@14#.
Here we determine the intrinsic probabilityPfirst(tw ;t) to
return aftert time steps to a site that was visited most r
cently at timetw from the beginning of the avalanche. Thu
to obtain the first-return probability, we take the age of t
avalanche,tw , into account. While in the stationary state
SOC models the first return distribution is genera
Pfirst(t);t2tfirst (t→`), we find that Pfirst(tw ;t) for both
models considered here scales according to Eq.~1! where the
exponenttfirst can be related to other critical exponents v
scaling relations for SOC@24#. The origin of the intrinsic
aging exponentr appears to us to be nontrivial, signaling th
breaking of time-translational invariance in the avalanc
dynamics. Unlike in the random walk near a wall, no sy
metry is explicitly broken. The Bak-Sneppen mechanism
both models evolves on an isotropic lattice with update ru
that do not change with time. The question then ari
whether the exponentr in Eq. ~1! can be related to the
known universal coefficients of the stationary SOC proce
or whether it describes new physics in avalanche dynam
of the Bak-Sneppen model.

A. Numerical procedure

In our simulations for both models we have used t
equivalent branching process@25# to eliminate any finite-size
effects. Initially, at timeta50, the smallest threshold valu
is set equal tolc to start alc avalanche. In every updat
ta→ta11, only the signallmin(ta) and its 2d nearest-
neighbor sites receive new threshold values. At any time,
store only those threshold valuesl i,lc that are part of the
avalanche because only those numbers can contribute to
signal, i.e., can ever become the smallest number. In a
tion, we keep a dynamic list of every site that has ever h
the signal at some time to determine the first-return pr
abilities. ~Since the Bak-Sneppen mechanism ford,4 is a
fractal renewal process, activity always returns to a site
less the avalanche dies.! Avalanches die when there are n
l i,lc or are stopped at a cutoffta5tco, and a new~inde-
pendent! avalanche is initiated withta50.



56 6469AGING EXPONENTS IN SELF-ORGANIZED CRITICALITY
FIG. 1. Plot ofPfirst
meas(tw ;t) as

a function of t for the Bak-
Sneppen model ind51. Each
graph is offset by a factor to avoid
overlaps.
b
f

e
.
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At each updateta we determine the previous timetw
when the signal was on the same site most recently~if ever!.
Then its first-return time is given byt5ta2tw , and we bin

histograms labeled byi 5 d 1
3 log2twe and j 5 d log2te. The data

are binned logarithmically so that in each bin a compara
number of events is averaged over: for each increment oj ,
the width of the bins fort increases by a factor of 2, whil
for each increment ofi the tw bins increase by a factor of 8
We then normalize for each value ofi separately to obtain
the measured first-return probabilitiesPfirst

meas(tw ;t). These
le

data are plotted in Figs. 1, 3, 5, and 7.
In each figure, each graph refers to a different value oi ,

increasing by a factor of 8 each time from left to right. Ea
graph possesses two distinct power law regimes, separ
by a crossover. To determine the form of the scaling funct
f (x) for these graphs according to Eqs.~1!, we note that the
crossover appears to scale linearly withtw in all cases. Thus,
we plot

f meas~x!;ttfirstPfirst
meas~ tw ;t !, x5

t

tw
, ~12!
FIG. 2. Scaling plot for
f meas(x) as a function ofx5t/tw

according to Eq.~12! for the nor-
malized distribution of the 1d
Bak-Sneppen model in Fig. 1.
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FIG. 3. Plot ofPfirst
meas(tw ;t) as

a function of t for the Bak-
Sneppen model ind52. Each
graph is offset by a factor to avoid
overlaps.
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using the appropriate values oftfirst . In each case, the dat
collapse reasonably well onto a single curve,f (x), which is
constant for small argument, and appears to fall like a po
law, see Figs. 2, 4, 6, and 8. The exponent of the power
is given byr 1t21 according to the relation between me
sured and intrinsic data discussed in Sec. III@see Eq.~11!#.
The values oft are given in Ref.@24# for the Bak-Sneppen
model in d51 and 2, andt53/2 in any dimension for the
multitrade model.

We have simulated the Bak-Sneppen branching proces
d51 with lc50.66702, summing over a sequence of
er
w

in
l

avalanches up to a cut-off attco5227. That data consist of a
total of about 1011 updates.~The results reported here ar
consistent with but substantially better than those repo
previously in Ref.@15# where data from avalanches that d
not reach the cutoff were discarded to avoid confusion ab
the relation between measured and intrinsic properties
cussed in Sec. III.!

The distributions forPfirst
meas(tw ;t) as a function oft, nor-

malized for each value ofi , 8i 21<tw,8i , are plotted in Fig.
1 for i 51, . . . ,8. Each graph shows two scaling regim
separated by a crossover that appears to scale linearly
FIG. 4. Scaling plot for
f meas(x) as a function ofx5t/tw

according to Eq.~12! for the nor-
malized distribution of the 2d
Bak-Sneppen model in Fig. 3.
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FIG. 5. Plot ofPfirst
meas(tw ;t) as

a function of t for the multitrade
model ind51. Each graph is off-
set by a factor to avoid overlaps.
at
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the associated value oftw . The initial regime scales with the
familiar exponent tfirst51.58 @24# ~as indicated by the
dashed line to the right!. Cutoff effects become apparent
aboutt'107510%tco.

In Fig. 2 we have combined the data into a scaling plot
f meas(x) according to Eq.~12! as a function of the scaling
variablex5t/tw . For x,1 that data indeed collapse onto
constant, while we observe a collapse onto a power law o
three orders of magnitude forx.1. Deviations from this
behavior are generally due to short-time, transient beha
for x,1, and due to statistical noise deep in the tail of t
distribution forx.1. We have bracketed the power law ta
r

er

or
e

by two dashed lines;x20.55 and;x20.5. Thus, we estimate
that the exponent of the tail is given byr 1t2150.52
60.04. With t51.0760.01 @24#, we finally get r 50.45
60.05.

B. Results for the Bak-Sneppen model ind52

In this case we have simulated the branching process
lc50.328 855@24#, summing over a sequence of all av
lanches up to a cutoff attco5225 ~longer avalanches are les
common here than in thed51 case!. We have run about 3
31010 updates for this model.
FIG. 6. Scaling plot for
f meas(x) as a function ofx5t/tw

according to Eq.~12! for the nor-
malized distribution of the 1d
multitrade model in Fig. 5.
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FIG. 7. Plot ofPfirst
meas(tw ;t) as

a function of t for the multitrade
model ind52. Each graph is off-
set by a factor to avoid overlaps.
s
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The distributions forPfirst
meas(tw ;t) as a function oft, again

normalized for each value ofi , 8i 21<tw,8i , are plotted in
Fig. 3 for i 51, . . . ,7. As in thed51 case, each graph show
two scaling regimes separated by a crossover that appea
scale linearly with the associated value oftw . The initial
regime supposed to scale with the exponenttfirst51.28 de-
termined from a more extensive simulation in Ref.@24#. That
behavior is given by the dashed line to the right. But ea
graph approaches that asymptotic behavior in its initial s
ing regime only very slowly, indicating strong corrections
scaling in this case. Even the combined data~the dashed line
to

h
l-

with circular marks!, not unlike the corresponding plot in
Ref. @24#, approach the asymptotic behavior only ve
slowly. Furthermore, cutoff effects become apparent at ab
t'106510%tco.

In Fig. 4 we have combined the data into a scaling plot
f meas(x) according to Eq.~12! as a function of the scaling
variablex5t/tw . The collapse onto a constant for the data
x,1 only proceeds slowly due to the aforementioned c
rections to scaling in the first return probability. On the oth
hand, we observe a collapse onto a power law over m
than three orders of magnitude forx.1 in this case: since
FIG. 8. Scaling plot for
f meas(x) as a function ofx5t/tw

according to Eq.~12! for the nor-
malized distribution of the 2d
multitrade model in Fig. 7.
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tfirst51.28 is smaller than in the cased51, many more
events occur in the tail of the distribution. We have brac
eted the power law tail by two dashed lines;x20.5 and
;x20.45. Thus, we estimate that the exponent of the tai
given by r 1t2150.4760.04. Witht51.24560.010@23#,
we finally get aboutr 50.2360.05.

C. Results for the multitrade model in d51

A number of important properties, such as the distrib
tions of the width and duration of an avalanche and the
ponent for the avalanche dimension (D54), can be derived
exactly for the multitrade model@14,13#. But many other
properties are as of yet elusive or can only be inferred fr
scaling relations; for instance,

tfirst522
d

4
. ~13!

In particular, no expression forPfirst(tw ;t) has been obtained
so far to study the aging behavior in this model more exp
itly. Thus, as a first step to obtain an explicit expression,
have simulated this model also ind51 and 2. The results
suggest thatr 51/4 in both cases, independent of dimensio

We have simulated the branching process withlc51/2
since we chose to update only one number on each neig
and always replace the minimum itself with 1@14#. Summing
over a sequence of all avalanches up to a cutoff attco5227,
we have run about 1012 updates for this model.

The distributions forPfirst
meas(tw ;t) as a function oft, again

normalized for each value ofi , 8i 21<tw,8i , are plotted in
Fig. 5 for i 51, . . . ,8.Each graph shows two scaling regim
separated by a crossover that appears to scale linearly
the associated value oftw . According to Eq.~13!, the initial
regime is known to scale asymptotically with the expon
tfirst57/4. That behavior is given by the dashed line to t
right. But as in the case of the 2d Bak-Sneppen model we
observe strong corrections to scaling. Even worse, cutoff
fects already become apparent at aboutt'10651%tco.
Generally, despite spending much more time on the sim
tion, the data have the poorest quality in this case also
cause the large value oftfirst suppresses the occurrence
events in the long-time tail.

Nontheless, in Fig. 6, we have combined the data int
scaling plot forf meas(x) according to Eq.~12! as a function
of the scaling variablex5t/tw . As expected, the correction
to scaling prevent a satisfactory collapse onto a constan
the data atx!1. Apparently, even the crossover regime
beset by transient behavior, which makes it difficult to loc
ize the transition to the power-law regime. At best, we c
discern scaling over two orders of magnitude in the tail
fore the data get too noisy. On the other hand, it is fair
assume from the analytical results that any exponent in
model should be a multiple of 1/4. Considering that the
clearly scales very close to the dashed line withx20.75 below
and definitely not like the dashed line withx20.5 above, we
believe thatr 1t2153/4. Thus, witht53/2 @14#, we con-
jecturer 51/4.

D. Results for the multitrade model in d52

We have simulated the branching process withlc51/4
since we chose to update only one number on each neig
-

s

-
x-

-
e
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and always replace the minimum itself with 1. Summi
over a sequence of all avalanches up to a cutoff attco5227,
we have run about 1011 updates for this model.

The distributions forPfirst
meas(tw ;t) as a function oft, again

normalized for each value ofi , 8i 21<tw,8i , are plotted in
Fig. 7 for i 51, . . . ,9.Each graph shows two scaling regim
separated by a crossover that appears to scale linearly
the associated value oftw . According to Eq.~13!, the initial
regime is assumed to scale with the exponenttfirst53/2. That
behavior is given by the dashed line to the right. We obse
again strong corrections to scaling and cutoff effects alre
at aboutt'10651%tco.

Combining the data into a scaling plot again~see Fig. 8!,
the corrections to scaling again prevent a satisfactory
lapse onto a constant for the data atx!1. But we observe an
excellent collapse of the data in the tail over roughly three
four orders of magnitude, clearly closer to the dashed l
with x20.75 below than the dashed line withx20.5 above.
Thus we haver 1t2153/4 andt53/2 as well in this case
leading us once more to conjecturer 51/4.

V. CONCLUSIONS

In conclusion, our numerical simulations affirm the ex
tence of a new and as-of-yet unexplained power law reg
in the late time behavior of the Bak-Sneppen model that w
discovered in Ref.@15#. The results underscore the prev
lence of memory effects in the SOC state of this mo
@13,26# and possibly other SOC models@18#.

We have been able to rule out a simple relation of
exponentr to the known exponents by considering some
the more obvious scaling arguments~which may not exist at
all! @15#. For instance, we can consider an avalanche a
random walk near a wall in an abstract random number sp
@17#. The addition or elimination of a random number belo
the thresholdlc corresponds to taking a step away or t
wards an absorbing wall in a random walk. The avalanc
ends when no random numbers are left belowlc , i.e., the
walker has been absorbed at the wall. The growth of rand
numbers belowlc scales likê n&;tds for the ~intrinsic! in-
finite avalanche, withds50.11 and 0.25 for the 1d and 2d
Bak-Sneppen model@24# and ds51/2 for the multitrade
model in any dimension. If the aging behavior in these mo
els were due to the same effect as in our simple random w
model in Sec. II, we would expect thatr 5ds , which is in-
consistent with the numerical results. It appears that the
gin of the aging behavior is due to more subtle features
the process and that time-translational invariance might
broken dynamically, as we have argued in Ref.@15#. The fact
that the analytically tractable multitrade model also sho
nontrivial aging behavior gives us hope that we will be ab
eventually to understand its origin.
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