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In a recent LettefPhys. Rev. Lett79, 889(1997] we demonstrated that the avalanches in the Bak-Sneppen
model display aging behavior similar to glassy systems. Numerical results for temporal correlations show a
broad distribution with two distinct regimes separated by a time scale that is related to the age of the avalanche.
This dynamical breaking of time-translational invariance results in a previously unrecognized critical exponent
r. Here we present results forfrom extensive numerical simulations of self-organized critical models in
=1 and 2. We findry-,=0.45+0.05 andr4-,=0.23+0.05 for the Bak-Sneppen model, and our results
suggest = 1/4 for the analytically tractable multitrade model in both dimensif84063-651X97)00812-X|

PACS numbg(s): 64.60.Lx, 05.40+j, 05.70.Ln

I. INTRODUCTION Generally, the origin of aging behavior does not have to
be profound. For instance, it arises in a simple random walk
Self-organized criticality(SOQ [1] describes a general model near a wall, where a symmetityanslational invari-
property of slowly driven dissipative systems with many de-ance is explicitly broken. But while the random walk near a
grees of freedom to evolve intermittently in terms of burstsWall and the Bak-Sneppen modéspecially its random
spanning all scales up to the system size. Many natural avi€ighbor varian{17]) are similar in many ways, it appears
lanchelike phenomena have been represented using this cdfat those similarities do not explain the observed aging be-
cept, including earthquakd@—4], extinction events in bio- havior. .
logical evolution [5—7], and landscape formatiof8,d]. In Sec. II, we use the random walk near a wall to illustrate
Recently, SOC has been observed in controlled Iaboratorg]eecqﬁ?wgiso;hs?ée\l\rllltlrwzeinzr;a%?'[s;r:ﬁjei?wrnfggl ?sglfergfgftlfagp
eﬁgsr[lﬂ«?r:rse Orglarllt?a?j ?(')'eaﬁl\%ri;heglf %[;fﬁzlren;fdilssig;nges_ ing the int_rinsic aging behavior for a process that does not
p : : y ot d 1t phy YS™ conserve its nornfsuch as a random walk near an absorbing
tems by umyersaht;[_lZ]. Ong crucial ingredient for a sys- wall or a SOC avalanche, having a finite stopping probabil-
tem to exhibit SOC is the existence of thresholds that allowiy) |y gec. v, we present detailed numerical results for the
it to_ record t_he stress exerted by the driving force over Iongagmg behavior of SOC models in one and two dimensions.
periods of time. The emergence of long-term memory hasgy particular, we have simulated the Bak-Sneppen model and
been demonstrated analytically3] for a multitrait evolution  the multitrade model. We have also simulated sandpile mod-
model[14], a variant of the Bak-Sneppen modél. els exhibiting SOC that show a quite different behavior and
In a recent Letter{15] we have shown that the self- will be discussed elsewhefé8]. Aging in the approach to-
organized critical state in the Bak-Sneppen model exhibitgvards or away from the SOC state of sandpile models has
aging behavior that is reminiscent of glassy syst¢fafy. also been investigated in R¢f.9]. In Sec. V we discuss our
Our results indicate that intrinsic two-time autocorrelationresults and show that a simple random walk description is
functionsP(t,,;t), describing the return of activity to a site not sufficient to explain the found aging behavior.
at timet,=t+t, which was active most recently at time
t,=t,, for an avalanche that startedtat=0, decay as power IIl. AGING RANDOM WALKS

laws with two distinct regimes according to In this section we will discuss a random walk model to
provide a simple intuitive picture of aging. It shows how the

P(t,, 1)~ t s | — system memorizes thigere, explicit breaking of a symme-
wo ty)’ try. Furthermore, the random walk illustrates the meaning of
the correlation functions used to describe the aging behavior
const (x<1) gnd serves to djscuss some of the technical issues in measur-
f(x N{ 3 ' (1) ing those functions.
X" (x>1). We want to consider a random walker orda 1 lattice

who can jump at most one step on each update either on the
The early time regime is that of the familiar stationary dy-infinite lattice or a semi-infinite lattice with an absorbing
namics. The late time regime has a new critical coefficient wall at the origin. A random walk is completely described by
characterizing the nonstationary relaxation behavior of théts propagator, the conditional probabili®(n,t|n,,t,) for a
SOC systems. The “waiting time't,, separating the early walker to reach a sita at timet, given that it was at sita,
and late time regimes is a measure of the age of the avat some previous timg<t. To determine its aging behavior
lanche. We have argued that this aging behavior arises fromve want to compute a simple two-time correlation function
the hierarchical structure of the avalanches. (see, e.g., Ref20] for a similar definition
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priate forms ofG in Eg. (4) into Eqg. (3) and choosingng
P(tw;t):; G(n,t+ty/n,t,)G(n,t,|ne,0) (2)  arbitrarily close to the wall, we obtain asymptotically

for a walker to return to a site at timg=t+t,,, given that n
it was at the same site at the “waiting time;,, after the start P(ty;t)~
of the walk. Thus, to determine the return probability to a

site, we take the time,, from the start of the walk to a

previous passage at that site into account. If the two-time = ——t—1/2f(—), fx)=—-—. (5
correlation functionP explicitly depends on,,, the system \/ﬁ m tw 1+x/4

is said to “age” because the walk would retain a memory of

the time since its inception in form of a return probability Thus, time-translational invariance is broken and the walk

0 = fxdn[l_efnzlt]nefnzmtw
w1ty J0

ng 2

that evolves over time. appears to age becauBebecomes a function of the scaling
variablex=t/t,,, signaling the predicted crossover in the re-
A. Unconstrained random walks turn behavior that scales linearly with the waiting timg

Here the scaling functiof(t/t,) behaves asymptotically as
f(x<1)~1 andf(x>1)~4/x. But to obtain the “intrinsic”
aging behavior of this process, we have to consider the effect
that the norm is not preserved because at each time step
walkers may disappear at the absorbing wall.

Clearly, for an unconstrained wallg is invariant under
shifts in space and time, and it i§(n,t+t,|n,t,)
=G(01]0,0). Since the norm of the walk is preserved at all
times, =,G(n,t,|ny,0)=1, Eq. (2) gives P(t,;t)=P(t)
=G(0,/0,0), independent of,,. Thus the unconstrained
walk has no memory of its past and does not age.

ll. INTRINSIC VS MEASURED AGING BEHAVIOR

B. Random walks near an absorbing wall Consider the unconstrained random walk in Sec. Il A, but

In the presence of an absorbing wall at the origin, spatialvith a finite probabilityz to disappear at each time step.
invariance is explicitly broken while time invariance f&  Then, the propagatorG, of this walk is given by

still holds. Equation2) merely simplifies to G4(n,tIng,tg) =(1—2)"""G(n,t|ngy,ty), where G is the
propagator of the norm-preserving walk in Sec. Il A. Thus,

P(t, )= G(nt|n,0G(nty|no,0), (3 with Et,l(tS(r!,t|no,t0)=1, we  get EnGZ(n,tlno,to)
n>0 =(1-2)""", i.e., the norm of this process is not preserved.

According to our definition of the two-time autocorrelation
which remains dependent af. Hence the breaking of spa- function P in Eq. (2),

tial invariance inG leads to a breaking of time invariance in
P. Such a memory effect arises in the following manner:

while in the unconstrained case the mean distdngef the pmeatt, )=, G (N, t+1ty|Nn,ty) Gy(N,ty|Ng,0)
walker from its origin vanishes, the walker starting near a n
wall departs from it such thain)~t*2, which follows from —G(04]0,0)(1—2) ", ©6)

the propagator given by

1 we would have to conclude that this process ages, dhce
G(n,t|ng,0)~ _[e—(n—no>2/4t_e—(n+no>2/4t] (4)  depends om, . And, indeed, in a numerical simulation of the
Jat process we would measuRE"? because we would average
over all processes up to a temporal cutgff, including
for sufficiently larget and n. Since the distribution for all  those that disappear at timest,,.
walks is sharply peaked near its mean, most walkers occupy But, clearly, the “aging” in this simple process is an
sitesn~ty> away from the wall after the waiting timg,.  artifact due to the diminished norm {1z)'* at time t
Giventhat most walkers occupy such sitesreturns to that  +t,,. Thus, proper normalization is required to extract the
site during subsequent timést,, follow the statistics of an  “intrinsic” aging behavior (due to the infinite walk from
unconstrained walkt is not yet large enough to return to the the “measured” aging behavid22].
wall. Only after timeg~t,, do a sizable portion of the walk- Other processes, such as random walks near an absorbing
ers experience the effect of the distant wall again, whichwall or avalanches in the Bak-Sneppen mechanism below,
leads to a change in their return statistics for all tintes also may disappear before reaching a cutoff, and we have to
>t,,. The changeover in its return behavior at later timhes consider the effect on the statistics of the measured results.
+1,, thus provides the walker with a memory of the earlierHere, too, one is interested in the intrinsic properties of the
period from the start up to timg, when the walk was drift-  surviving process, i.e., those of the infinite random walk or
ing away from the wall(Considering the walker as the cen- avalanche, while in simulations one usually averages over all
ter of a growing domain and its distance to the wall as auns of a process, whether they survived or not. In many
measure of the linear size of that domain relates this randoroases, the results for the asymptotic scaling behavior of some
walk model nicely to the domain-growth picture of aging in intrinsic property are no different from the measured ones
glasses proposed in R¢R1].) because the contribution from dying runs remains insignifi-
For this random walk model the crossover in its returncant. But for the correlation functions considered in this pa-
behavior can be easily derived explicitly: inserting the approper, which depend on two independent time variables, we do
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need to consider the effect of the probabili®(6) of a The multitrade mode[14,13 is a variant of the Bak-
process to disappear at tingeto relate the intrinsic and the Sneppen model that provides a series of exact results for the
measure results. spatiotemporal correlations in the avalanche process. In par-

To obtain theintrinsic properties of the infinite process, ticular, an equation of motion can be derived and solved to
we have to properly normalize the correlation function. Toobtain a propagator for the spread of avalanche activity, and
that end, we consider the two-time correlation functionto obtain a complete set of scaling exponents that verify
P(t,;t|0) for a run that disappears exactly at tirheg= 6, scaling relations previously proposed for the Bak-Sneppen
and its generic relation to the intrinsic two-time correlationmodel. In this model each lattice site is occupiedNdyin-

function P™(t,, ;t): dependent random numbers. On each update again the small-
est number in the whole system is located and updated, and
0 (6<t,+1) one randomly chosen numbésut of M) from each of the
P(tW;t|0):[Pintr(tW.t) (9=t,+1) (7)  neighboring sites is updated as well. While the mechanism

proceeds in the same way for &ll as forM =1 (the Bak-
These quantities are related to the measured two-time corr&neppen modglit can be treated analytically fdvl =oo.

lation functionP = P™35given in Eq.(5): assuming a power- A quantity similar to the two-time autocorrelation func-
law probabilityP,(8)~ 6~ 7, 71, for the run to disappear at tion defined in Eq(2) can be measured for avalanches in the
time t,= 6, we have self-organized critical state of both models. We focus on a

simple quantity,Py.s(t), measuring the first returns of the

teo activity to a given site. A power law distribution fé?;,<(t)
Pmeaftw:t)=j do P(t,;t|0)P(0) has been measured numerically for a variety of different
0 SOC modelg24] by recording all first returns and its expo-
~ Pt [ (ty+ )=t 7] (8)  nhent has been derived exactly for the multi-trade m¢#i4).

Here we determine the intrinsic probabili)«(t,, ;t) to
Assuming that we only consider data sufficiently far from thereturn aftert time steps to a site that was visited most re-

cutoff, i.e., ¢, +1)'" "<tg, 7, we obtain cently at timet,, from the beginning of the avalanche. Thus,
to obtain the first-return probability, we take the age of the
pint(t,, t)~P™eagt, ct)(t,+t)7 L (99  avalanchet,,, into account. While in the stationary state of

SOC models the first return distribution is generally

For the particular form of the intrinsic two-time correlation Pfirst(t) ~t™ st (t—o0), we find that Pg(t,,;t) for both
function considered in Eq(1), the correct scaling function Models considered here scales according toBavhere the

for the aging behavior of the process is given by exponentr; can be related to other critical exponents via
scaling relations for SOC24]. The origin of the intrinsic
fINr(x) ~ M3 x) (1 +x) 7~ L. (10 aging exponent appears to us to be nontrivial, signaling the

breaking of time-translational invariance in the avalanche
Since we are interested in the intrinsic behaviif(x>1)  dynamics. Unlike in the random walk near a wall, no sym-

~x~", we obtain from our numerical data metry is explicitly broken. The Bak-Sneppen mechanism in
both models evolves on an isotropic lattice with update rules
fmeagy) ~x~(r+7=1), (1)  that do not change with time. The question then arises

whether the exponent in Eqg. (1) can be related to the

Of course, for the random walk near the absorbing wall itknown universal coefficients of the stationary SOC process,
is 7=3/2 from the familiar first passage tin{@3]. Thus, Or Whether it describes new physics in avalanche dynamics
even after correcting for the effect of disappearing walkersof the Bak-Sneppen model.
the intrinsic process still shows aging behavior: the measur-
able aging effect derived in Ed5), f(x)=f"3{x)~x"1,
leads to an intrinsic aging behavior 8f"(x>1)~x"" with
r=1/2 according to Eq(11). In our simulations for both models we have used the
equivalent branching proceg25] to eliminate any finite-size
effects. Initially, at timet,=0, the smallest threshold value
is set equal ta\. to start a\, avalanche. In every update

The Bak-Sneppen modgV] has been studied intensely t,—t,+1, only the signal\,(t,) and its 2 nearest-
and with great numerical accuracy in recent years. We refeneighbor sites receive new threshold values. At any time, we
to Ref.[24] for a review of its many features and simply store only those threshold valurs<\. that are part of the
utilize those facts here. The model consists of random numavalanche because only those numbers can contribute to the
bers \; between 0 and 1, each occupying a sit®n a  signal, i.e., can ever become the smallest nhumber. In addi-
d-dimensional lattice. At each update step, the smallest rartion, we keep a dynamic list of every site that has ever held
dom numben ., (t) is located. That site as well as itsl2 the signal at some time to determine the first-return prob-
nearest neighbors each get new random numbers drawn inbilities. (Since the Bak-Sneppen mechanism dzr4 is a
dependently from a flat distribution between zero and onefractal renewal process, activity always returns to a site un-
The system evolves to a SOC state where almost all numbelass the avalanche dig¢sAvalanches die when there are no
have values abova., with \. avalanches formed by the \;<A. or are stopped at a cutoff=t.,, and a newinde-
remaining numbers below. pendenk avalanche is initiated with,=0.

A. Numerical procedure

IV. AGING IN SELF-ORGANIZED CRITICAL MODELS
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10°
10°
P FIG. 1. Plot of PJiet{ty;t) as
& a function of t for the Bak-
& 100 F Sneppen model ind=1. Each
graph is offset by a factor to avoid
overlaps.
10°
10_12 Il 1 1 Il 1 | 1
10' 10° 10° 10* 10° 10° 10’ 10°

data are plotted in Figs. 1, 3, 5, and 7.

when the signal was on the same site most recdiitgve). N €ach figure, each graph refers to a different valug, of
increasing by a factor of 8 each time from left to right. Each

Then its first-return time is given by=t,—t,,, and we bin o .

. - . graph possesses two distinct power law regimes, separated
histograms labeled by=[3log,t,] and j=[log,t]. The data py 4 crossover. To determine the form of the scaling function
are binned logarithmically so that in each bin a comparablg (x) for these graphs according to Eq$), we note that the
number of events is averaged over: for each increment of crossover appears to scale linearly wighin all cases. Thus,
the width of the bins fott increases by a factor of 2, while we plot
for each increment af thet,, bins increase by a factor of 8.

At each updatet, we determine the previous timg,

t

We then normalize for each value bfseparately to obtain fmea T pMeast _
. X)~tmstPg 2L, 1), X=—, 12
the measured first-return probabilitigdc{t,,;t). These ) et Ut ) tw 12
10°
. FIG. 2. Scaling plot for
= fMe8x) as a function ofx=t/t,,
according to Eq(12) for the nor-
10” malized distribution of the d

Bak-Sneppen model in Fig. 1.
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10

10"

10°
_ FIG. 3. Plot of Pfiei{ty;t) as
5 a function of t for the Bak-
& Sneppen model ind=2. Each

10° | graph is offset by a factor to avoid

overlaps.
107
10° S - ‘s < o 4 ,
10 10 10 10 10 10 10 10

using the appropriate values of.;. In each case, the data avalanches up to a cut-off g,=22". That data consist of a
collapse reasonably well onto a single curfx), which is  total of about 18" updates.(The results reported here are
constant for small argument, and appears to fall like a powetonsistent with but substantially better than those reported
law, see Figs. 2, 4, 6, and 8. The exponent of the power laypreviously in Ref[15] where data from avalanches that did
is given byr+ 7—1 according to the relation between mea- not reach the cutoff were discarded to avoid confusion about
sured and intrinsic data discussed in Sec[dde Eq(11)].  the relation between measured and intrinsic properties dis-
The values ofr are given in Ref[24] for the Bak-Sneppen cussed in Sec. IlJ.

model ind=1 and 2, andr=3/2 in any dimension for the ~ The distributions forP{is’{t,, ;t) as a function oft, nor-

multitrade model. malized for each value df 8'~1<t,<8', are plotted in Fig.
We have simulated the Bak-Sneppen branching process ih for i=1,...,8. Each graph shows two scaling regimes
d=1 with \;=0.66702, summing over a sequence of allseparated by a crossover that appears to scale linearly with

FIG. 4. Scaling plot for
fMeax) as a function ofx=t/t,,
according to Eq(12) for the nor-
malized distribution of the @
Bak-Sneppen model in Fig. 3.

f(x)

-2

107° 10
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FIG. 5. Plot of PJiet{ty;t) as
a function oft for the multitrade
model ind=1. Each graph is off-
set by a factor to avoid overlaps.

P(t_;t)

the associated value tf . The initial regime scales with the by two dashed lines-x %% and~x~ %5, Thus, we estimate

familiar exponent 7= 1.58 [24] (as indicated by the that the exponent of the tail is given hy+7—1=0.52
dashed line to the right Cutoff effects become apparent at +0.04. With 7=1.07+=0.01 [24], we finally getr=0.45
aboutt~10"=10%t,. +0.05.

In Fig. 2 we have combined the data into a scaling plot for
fMea¥x) according to Eq(12) as a function of the scaling
variablex=t/t,,. Forx<1 that data indeed collapse onto a
constant, while we observe a collapse onto a power law over In this case we have simulated the branching process with
three orders of magnitude for>1. Deviations from this \.=0.328 855[24], summing over a sequence of all ava-
behavior are generally due to short-time, transient behavidanches up to a cutoff dt,=22° (longer avalanches are less
for x<1, and due to statistical noise deep in the tail of thecommon here than in thé=1 case¢. We have run about 3
distribution forx>1. We have bracketed the power law tail x 10'° updates for this model.

B. Results for the Bak-Sneppen model ird=2

FIG. 6. Scaling plot for
fme8Yx) as a function ofx=t/t,,
according to Eq(12) for the nor-
malized distribution of the d
multitrade model in Fig. 5.

f(x)

X=t/tW
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10
107
10°
2 FIG. 7. Plot of Pfiee{tw;t) as
< 107 a function oft for the multitrade
A model ind=2. Each graph is off-
set by a factor to avoid overlaps.
107
10°
10‘11 1 1 1 1 1 1
10° 10' 10° 10° 10* 10° 10° 10’ 10°

The distributions foPfe{t,, ;t) as a function ot, again ~ with circular mark$, not unlike the corresponding plot in
normalized for each value of 8 ~'<t,<8', are plotted in Ref. [24], approach the asymptotic behavior only very
Fig. 3fori=1,...,7. Asin thed=1 case, each graph shows slowly. Furthermore, cutoff effects become apparent at about
two scaling regimes separated by a crossover that appearstte 10°=10%t.,.
scale linearly with the associated value tQf. The initial In Fig. 4 we have combined the data into a scaling plot for
regime supposed to scale with the expongpi=1.28 de- f™%{x) according to Eq(12) as a function of the scaling
termined from a more extensive simulation in H@4]. That  variablex=t/t,,. The collapse onto a constant for the data at
behavior is given by the dashed line to the right. But eachx<1 only proceeds slowly due to the aforementioned cor-
graph approaches that asymptotic behavior in its initial scalrections to scaling in the first return probability. On the other
ing regime only very slowly, indicating strong corrections to hand, we observe a collapse onto a power law over more
scaling in this case. Even the combined d#e dashed line than three orders of magnitude fer-1 in this case: since

FIG. 8. Scaling plot for
fM%Yx) as a function ofx=t/t,,
according to Eq(12) for the nor-
malized distribution of the @
multitrade model in Fig. 7.
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Tirst= 1.28 IS smaller than in the cast=1, many more and always replace the minimum itself with 1. Summing

events occur in the tail of the distribution. We have brack-over a sequence of all avalanches up to a cutoff,at 227,

eted the power law tail by two dashed linesx ®°> and  we have run about £8 updates for this model.

~x~%% Thus, we estimate that the exponent of the tail is The distributions foP1et,, ;t) as a function ot, again

given byr +7—1=0.47+0.04. With7=1.245+0.010[23],  normalized for each value of 8 ~1<t,<8', are plotted in

we finally get about =0.23+0.05. Fig. 7 fori=1, . .. ,9.Each graph shows two scaling regimes
C. Results for the multitrade model ind=1 separated by a crossover that appears to scale linearly with

the associated value &f . According to Eq.(13), the initial

A number of important properties, such as the distribu-regime is assumed to scale with the expongpt=3/2. That

tions of the width and duration of an avalanche and the ex; L . :
ponent for the avalanche dimensioR € 4), can be derived behavior is given by the dashed line to the right. We observe

exactly for the multitrade moddl14,13. But many other again strong corrections to scaling and cutoff effects already

~ = 0,
properties are as of yet elusive or can only be inferred fron’ialt aboutt_ .106 1 /°t°°'. . , .
scaling relations; for instance, Combining the data into a scaling plot agasee Fig. 8,

the corrections to scaling again prevent a satisfactory col-
om0 d (13 lapse onto a constant for the dataxat1. But we observe an
first 4° excellent collapse of the data in the tail over roughly three to
four orders of magnitude, clearly closer to the dashed line
In particular, no expression fdt;(t,, ;t) has been obtained \ith x~°75 pelow than the dashed line witk %5 above.
so far to study the aging behavior in this model more explicthus we have + r— 1= 3/4 andr=3/2 as well in this case,
itly. Thus, as a first step to obtain an explicit expression, wi : :
have simulated this model also d=1 and 2. The results qeadmg us once more to conjecture 1/4.

suggest that =1/4 in both cases, independent of dimension.

We have simulated the branching process with=1/2 V. CONCLUSIONS
since we chose to update only one number on each neighbor
and always replace the minimum itself witti 14]. Summing In conclusion, our numerical simulations affirm the exis-
over a sequence of all avalanches up to a cutoft@2?’,  tence of a new and as-of-yet unexplained power law regime
we have run about 8 updates for this model. in the late time behavior of the Bak-Sneppen model that was

The distributions fO’P?rgtaitwinaS a function of, again  giscovered in Ref[15]. The results underscore the preva-
normalized for each value of 8'" "<t,,<8', are plotted in  |ence of memory effects in the SOC state of this model
Fig. 5fori=1, ... ,8.Each graph shows two scaling regimeslh%&za and possibly other SOC moddl&s].
separated by a crossover that appears to scale linearly with \ye have been able to rule out a simple relation of the

exponentr to the known exponents by considering some of

the more obvious scaling argumettighich may not exist at
Thist= 7/4. That behavior is given by the dashed line to the garg ke y

right. But as in the case of thed2Bak-Sneppen model we all) [15]. For instance, we can consider an avalanche as a

: : frandom walk near a wall in an abstract random number space
observe strong corrections to scaling. Even worse, cutoff e F17]. The addition or elimination of a random number below
fects already become apparent at abowst10P=1%t.,. '

Generally, despite spending much more time on the simulat-he threshold\; corresponds to taking a step away or to-

tion, the data have the poorest quality in this case also be¥ards an absorbing wall in a random walk. The avalanche
cause the large value af,, suppresses the occurrence of ends when no random numbers are left below i.e., the
events in the long-time tail. walker has been absorbed at the wall. The growth of random

Nontheless, in Fig. 6, we have combined the data into #Umbers below scales like(n)~t" for the (intrinsic) in-
scaling plot forf™2{x) according to Eq(12) as a function finite avalanche, wittds=0.11 and 0.25 for thed and
of the scaling variabla=t/t,,. As expected, the corrections Bak-Sneppen model24] and ds=1/2 for the multitrade
to scaling prevent a satisfactory collapse onto a constant fonodel in any dimension. If the aging behavior in these mod-
the data aix<1. Apparently, even the crossover regime isels were due to the same effect as in our simple random walk
beset by transient behavior, which makes it difficult to local-model in Sec. I, we would expect thatdg, which is in-
ize the transition to the power-law regime. At best, we canconsistent with the numerical results. It appears that the ori-
discern scaling over two orders of magnitude in the tail begin of the aging behavior is due to more subtle features of
fore the data get too noisy. On the other hand, it is fair tothe process and that time-translational invariance might be
assume from the analytical results that any exponent in thigroken dynamically, as we have argued in R&§]. The fact
model should be a multiple of 1/4. Considering that the tailthat the analytically tractable multitrade model also shows
clearly scales very close to the dashed line wit-">below  nontrivial aging behavior gives us hope that we will be able
and definitely not like the dashed line wiki ®° above, we  eventually to understand its origin.
believe thatr + 7— 1=3/4. Thus, withr=3/2 [14], we con-
jecturer=1/4.
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